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Abstract. We investigate the radiative decays of the φ-meson to the scalar mesons a0(980) and f0(980).
We demonstrate that, contrary to earlier claims, these decays should be of the same order of magnitude
for a molecular state and for a compact state and, therefore, the available experimental information is
consistent with both a molecular as well as a compact structure of the scalars. Thus, the radiative decays
of the φ-meson into scalars establish a sizable KK̄ component of the scalar mesons, but do not allow to
discriminate between molecules and compact states.

PACS. 13.60.Le Meson production – 13.75.-n Hadron-induced low- and intermediate-energy reactions and
scattering (energy ≤ 10 GeV) – 14.40.Cs Other mesons with S = C = 0, mass < 2.5 GeV

1 Introduction

It has been claimed for many years that studies of radia-
tive decays φ → γa0(980) → γπ0η and φ → γf0(980) →
γπ0π0 are a powerful tool to discriminate between various
models for the low-lying scalar mesons. The extraction of
the φγa0 and φγf0 coupling constants from the data is not
a straightforward task (see [1]), but it is a common belief
that, with data accurate enough, radiative decays would
reveal the nature of the lightest scalars.

The simplest mechanism for these radiative decays as-
sumes that the a0 and f0 are 3P0 quarkonia, and the
decays proceed via a quark loop. Nevertheless, with the
φ-meson being mostly an ss̄ state, this mechanism can-
not be responsible for the decay φ → γa0, since, in the
quarkonium picture, the a0 is an isovector state made of
light quarks. Similarly, only f0(ss̄) can be produced via
the quark loop mechanism and, if so, the subsequent de-
cay f0 → π0π0 is suppressed by the OZI rule. On the other
hand, as both f0 and a0 are close to the KK̄ threshold
and are known to couple strongly to this channel, one
expects that the radiative-decay mechanism via charged-
kaon loops should play an essential role, as was suggested
in refs. [2–4]. The existing data on φ radiative decays [5–7]
support this expectation, as is shown in detail in ref. [8].

The latter observation does not mean per se that
the quarkonium assignment for a0 and f0 is excluded by
the data. It only means that the strong coupling to the
KK̄ channel, together with the threshold enhancement
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phenomenon, makes the kaon loop mechanism dominant.
However, the strong coupling to KK̄ implies that the KK̄
component in the wave functions of these mesons should
be large, and recent studies [9] based on the analysis of
near-threshold data confirm this. A large KK̄ admixture
should be reflected somehow in the radiative-decay ampli-
tude.

In ref. [3] it is claimed that there should be a strong
suppression of the φ → γf0/a0 branching ratio for the
scalars in case they are loosely bound molecules as com-
pared to point-like scalars that correspond to compact
quark states, (10−5 vs. 10−4). A study by Achasov et

al. [4], where the finite width of scalars was taken into
account, arrived at the same conclusion. Thus, the au-
thors of [3] and [4] stress that data for this branching ratio
should allow to prove or rule out the molecular model of
the scalars. However, no such suppression was found in re-
cent kaon loop calculations, refs. [10–12], where the scalars
were considered as dynamically generated states, i.e., as
molecules. The aim of the present paper is to demon-
strate explicitly the implications of a molecular structure
of scalars on the radiative φ decay. In the course of this
we can demonstrate what went wrong in the analysis of
ref. [3] and confirm the results of refs. [10–12].

2 Point-like scalars

To simplify the situation we work with stable scalars —the
generalization to a more realistic case is straightforward
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Fig. 1. Diagrams contributing to the radiative-decay amplitude (1).

and should not change the conclusions; we comment on
what is necessary for this generalization in appendix A.
The current describing the radiative transition between
the vector meson φ and a scalar meson S, in the kaon
loop model, is written as [13,14] (see [3] for notations)

Mν = e
gφgS

2π2im2
K

I(a, b)[εν(p · q)− pν(q · ε)], (1)

where p and q are the momenta of the φ-meson and the
photon, respectively, mK is the kaon mass, gφ and gS are
the φK+K− and SK+K− coupling constants, εν is the

polarization four-vector of the φ-meson, a =
m2
φ

m2
K

, and b =
m2
S

m2
K

(in case of an unstable particle produced m2
S is to

be replaced by the invariant mass squared of the decay
products). The amplitude (1) is transverse, Mνqν = 0,
and is proportional to the photon momentum.

For the point-like model of the scalar mesons the func-
tion I(a, b) was calculated in refs. [2,3]. It is given by
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Note that the integral I(a, b) remains finite in the limit
a→ b.

To arrive at formula (1) consider the sum of the graphs
depicted in fig. 1(a)-(c), where the appearance of the
graph 1(c) is a consequence of gauge invariance, since the
φ→ KK̄ vertex is momentum dependent. The current in
eq. (1) is given by Mν = egφgSεµJµν , with

Jµν = J (a)µν + J (b)µν + J (c)µν = 2J (a)µν + J (c)µν , (3)

where

J (a)µν =

∫

d4k

(2π)4

× (2k − p)µ(2k − q)ν
[k2−m2+i0][(k−q)2−m2+i0][(k−p)2−m2+i0]

,

(4)

J (c)µν = −2gµν
∫

d4k

(2π)4

× 1

[k2 −m2 + i0][(q + k − p)2 −m2 + i0]
, (5)

and m = mK .
Since gauge invariance demands the structure of the

integral (3) to be

Jµν = J [pνqµ − (p · q)gµν ], (6)

the strategy applied in ref. [3] is to read off the coefficient
of the pνqµ term, coming entirely from the integral (4),
and to restore then the coefficient of the gµν term with
the help of eq. (6). This allows the authors to deal with a
finite integral and thus to bypass the problem of treating
the divergent parts of the loop integrals (4), (5). However,
as we shall see below, the divergent pieces cancel and the
sum of diagrams given in eq. (3) is finite [15].

To see this, we decompose the expression for J
(a)
µν as

2J (a)µν = J [pνqµ − (p · q)gµν ] + 2gµνJ
′
a , (7)

where

J = − i

2π2m2

{

1
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×
∫ 1

0
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}

= − i

π2m2
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(8)

Here and in what follows we consider the case ofmφ > 2m,
mS < 2m. In addition

J ′a =
i

16π2

[

2

ε
− γE − ln

m2

4πµ2ε

]

− i

8π2

×
∫ 1

0

dz(1− z) ln[1− bz(1− z)] , (9)
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where µε is the auxiliary mass parameter, the number
of dimensions D is equal to 4 − ε, and γE is the Euler
constant. Similarly, the contact term (5) can be presented
as −2gµνJ ′c with

J ′c =
i

16π2

[

2

ε
− γE − ln

m2

4πµ2ε

]

− i

16π2

×
∫ 1

0

dz ln[1− bz(1− z)], (10)

and, since

∫ 1

0

dz(1− 2z) ln[1− bz(1− z)] = 0,

the structure (6) is restored. We conclude therefore that,
with the proper regularization, the total matrix element
is finite. It means that the range of convergence of the
integrals involved is defined only by the kinematics of the
problem. In particular, if both masses of the vector and
scalar mesons are close to the KK̄ threshold, the inte-
grals converge at k0 ∼ m and for nonrelativistic values of
the three-dimensional loop momentum k, |k| ¿ m. The
nonrelativistic limit of the integral I(a, b) takes the form

INR(a, b) =
π(x3 + 3xy2)

24(x2 + y2)2
+ i

πy3

12(x2 + y2)2
, (11)

where

y =
√

(a/4)− 1 x =
√

1− (b/4) , x, y ¿ 1.

Note that, although expression (11) contains the factor
1

x2+y2 ∼ 1
a−b , it does not mean that INR(a, b) blows up

in the limit of zero photon energy, ω → 0. Indeed, for-
mula (11) is valid for the scalar meson lying below the
KK̄ threshold, so one cannot put ω = 0 here. If the scalar
appears above the kaon threshold, eq. (11) is replaced by

πi

24

(2y + x̃)

(y + x̃)2
, x̃ =

√

(b/4)− 1 (12)

so that I(a, b) remains finite in the limit ω → 0.

3 Introducing the scalar wave function

When treating the scalar meson as an extended (non–
point-like) object, it is not sufficient to insert the corre-
sponding form factor into the K+K−S vertex (see [3]),
but gauge invariance calls for a correction term induced
by this additional flow of charge. Since only soft photons
are involved, the needed correction term can be expressed
as the derivative of the form factor inserted. Thus, we get
for the induced vertex

Γν(K
+K−Sγ) = −2(p+ν − p−ν )

∂Γ (p2,m2)

∂p2

∣

∣

∣

∣

p2=m2

, (13)

where Γ (p2+, p
2
−) = Γ (p2−, p

2
+) parameterizes the mo-

mentum dependence of the K+K−S vertex, with

Γ (m2,m2) = 1. Here p+ν and p−ν are the K+ and K− four-
momenta, respectively. The corresponding extra diagram
is depicted in fig. 1(d).

Before proceeding further we note that inclusion of the
extra contact vertex (13) is a way to insert an ultraviolet
cutoff in a gauge-invariant way. As demonstrated above,
the integrals of interest converge already for nonrelativis-
tic momenta even for a point-like vertex, thus it is justi-
fied to use nonrelativistic kinematics also when the vertex
function Γ is included, as was done in [11] —one only
needs the mild assumption that Γ decreases faster than
1/k for increasing values of its arguments. Then only the
positive-energy parts of the kaon propagators are retained,
the kaon energies are replaced by m, and mφ and mS

are replaced by 2m, wherever possible. As to the vertex
function, in the nonrelativistic description the virtuality
of kaons is measured by the relative momentum of kaons
in the intermediate state, so that in the center-of-mass
frame of the vector meson (p = 0) the vertex function
Γ is a function of the three-momentum of the outgoing
kaons only and thus the spatial loop integrals read

Jik=2J
(a)
ik +J

(c)
ik +J

(d)
ik =−δik

i

4π2
(a− b)I(a, b;Γ ) + . . . ,

(14)
when evaluated in the rest frame of the vector meson.
Terms that do not contribute to the process of interest
are not shown explicitly. Note that gauge invariance is en-
sured by the appearance of the term (a− b) that vanishes
for vanishing outgoing-photon energy. The individual in-
tegrals are

2J
(a)
ik = − i

m3

∫

d3k

(2π)3

× kikkΓ (|k− q/2|)

[EV − k2

m + i0]

[

ES − (k−q/2)
2

m + i0

] ,

J
(c)
ik = − i

2m2
δik

∫

d3k

(2π)3
Γ (k)

ES − k2

m + i0
,

J
(d)
ik = − i

2m2

∫

d3k

(2π)3
kikk

EV − k2

m + i0

1

k

∂Γ (k)

∂k
. (15)

We assume EV = mV − 2m > 0, ES = mS − 2m < 0
since looking at only one kinematic regime is sufficient to
make our point clear. For more realistic calculations that
include the finite width of the scalar mesons we recom-
mend refs. [10–12]. Performing integration by parts in the

integral J
(d)
ik , one has

J
(d)
ik =

i

2m2
δik

∫

d3k

(2π)3
Γ (k)

EV − k2

m + i0
+

i

3m3
δik

×
∫

d3k

(2π)3
k2Γ (k)

(EV − k2

m + i0)2
. (16)

This trick was used both in ref. [3] and ref. [11].
Let us now assume that Γ decreases with the range β

that satisfies the conditions

β2 À mEV , β2 À m|ES |. (17)
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Fig. 2. The real (upper plot) and the imaginary (lower plot)
parts of the function I1 = (a − b)I(a, b;Γ ) for β = 0.2 GeV
(dash-dotted line), β = 0.4 GeV (dotted line), β = 0.6 GeV
(dashed line), and β = 0.8 GeV (thin solid line). The result of
the full point-like theory is given by the thick solid line.

With the help of the representation (16) one immediately
sees that, in the limit β →∞, the divergent terms in Jik,
eq. (14), cancel each other and, in the leading nonrelativis-
tic approximation, EV ¿ m, |ES | ¿ m, the total matrix
element does not depend on β:

I(a, b;Γ ) = INR(a, b). (18)

We stress that the result (18) follows from the non-
relativistic formula (14), and the only condition needed
is (17).

We have repeated the calculation of I(a, b;Γ ) pre-
sented in ref. [11] with the model form factor Γ (k) =
β2/(k2 + β2). The results are depicted at fig. 2 together
with the results of the full point-like theory. One can see
that, in the soft-photon limit, there is no considerable sup-
pression of the matrix element due to finite values of β,
down to β ∼ 0.3 GeV. The reason for this was discussed
above —the integral of eq. (3) converges for nonrelativistic
values of |k|, in the soft-photon limit.

Now we specify the form factor in the molecular model
for the scalar mesons. To this end we use the well-known

quantum-mechanical expressions which relate the KK̄S
vertex and the wave function of the molecule. In the vicin-
ity of a bound state the nonrelativistic t-matrix t(k,k′, E)
takes the form

t(k,k′, E) =
γ(k)γ(k′)

E + ε− i0 , γ(k) = v̂φ(k) , (19)

where φ(k) is the bound-state wave function in the mo-
mentum space, normalized to unity, ε = −ES is the bind-
ing energy, and the Schrödinger equation for the bound
state is written symbolically as

k
2

m
φ(k) + v̂φ(k) = −εφ(k). (20)

The relativistic vertex differs from the nonrelativistic ver-
tex γ by a kinematical factor (see, e.g., [16]),

gSΓ (k) = (2π)3/2
√

8m2mS γ(k), (21)

where the effective coupling gS is introduced to ensure the
normalization condition Γ (0) = 1. Using the bound-state
equation (20), one has, finally,

gSΓ (k) = (2π)3/2
√

8m2mS

(

k
2

m
+ ε

)

φ(k). (22)

Thus, we find that the momentum-dependent factor that
appears in eq. (22) exactly compensates for the two-kaon
propagator in eq. (15). The wave function then supplies
exactly that piece due to its demanded asymptotics.

A real molecule is a loosely bound state with a large
mean distance between the constituents —much larger
than the range of the binding force r0. In this deuteron-
like case one has

φ(k) =

√
κ

π

1

k
2 + κ2

, κ =
√
mε. (23)

Correspondingly, the vertex (22) does not depend on k,
and one can safely use formulae (1), (2) of the point-like
theory with

gS =
(2π)3/2

π

√
8mSκ,

g2S
4π
≈ 32m

√
mε. (24)

The nonrelativistic expansion (11) of the integral I(a, b)
can be used as well.

So we conclude that the range β of the form factor
should be identified with the inverse range of the force,
β ∼ 1/r0, and, if the inequality

κr0 ∼
κ

β
¿ 1 (25)

holds true, the results of the point-like theory for the ra-
diative φ → γS decay are valid for the molecular model
of the scalar. In particular, there is no special suppression
of the matrix element due to a finite value of β.

The latter statement is based on the validity of the
inequality (25). What values of β would one expect in re-
alistic models of theKK̄ molecule? In the meson exchange
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Fig. 3. The dependence of the branching ratio Br(φ → γS)
on the mass of the scalar meson in the molecular model.

models like [17] it is argued that a strong t-channel force is
responsible for the formation of scalars. In such a case it is
reasonable to identify β with the mass of the lightest me-
son exchanged. As there is no pion exchange in the scalar
sector, the lightest meson should be the ρ, which gives for
β the value of about 0.8 GeV. In the phenomenological
picture of ref. [11], β is taken to be 0.5–0.7 GeV. In the
quark language, β is defined by the scale of the internal
size of the quark wave function, which also leads to the
estimate for β to be of the order of a few hundred MeV.
With such estimates, the inequality (25) is safely valid for
the masses of the scalar about 970–980 MeV.

Formula (24) implies that the vertex gS depends on
the binding energy and its value decreases with decreasing
binding energy. This, in turn, causes a suppression of the
branching ratio when the binding energy tends to zero,
cf. fig. 3. However, for binding energies of typical order
of magnitude, for example, ε = 10 MeV, eq. (24) yields a
coupling constant gS of

g2S
4π

= 1.12 GeV2. (26)

That corresponds to a branching ratio Br(φ → γS) ≈
2.6 × 10−4 which means that there is practically no sup-
pression.

Nevertheless, we should emphasize in this context that
a reliable quantitative calculation of the width certainly
requires a more realistic approach where it is taken into
account that the scalar mesons have finite widths due to
the presence of the light pseudoscalar channels, and that
the quantities that are really measured are the transitions
φ → γππ or φ → γπη. The impact of finite-width effects
have been thoroughly investigated by J.A. Oller [12] and
also by Achasov and Gubin [18] and we refer to their work
for details. Here we only want to make the reader aware of
the fact that due to the proximity of the γS threshold to
the mass of the φ(1020)-resonance, even small variations
in the nominal resonance masses of the scalar mesons have
a drastic effect on the available phase space and, in turn,
on the obtained results —as can be imagined from fig. 3—
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Fig. 4. The wave function of the KK̄ system, in momentum
space. The approximate solution, eq. (28), is represented by
curve 1, and the deuteron-like wave function, eq. (23), is rep-
resented by curve 2.

unless the finite width of the (f0(980) or a0(980)) scalar
mesons is considered [12,18].

To take into account finite-width effects one has to use
the two-channel version of eq. (19) from the very begin-
ning so that the vertex which appears in the loop integral
is accompanied by the vertex that appears in the reso-
nance decay, as is required by the two-channel unitarity
condition. If the characteristic scale β in this full t-matrix
is not too small, then the feature that there is no specific
suppression due to the molecular structure of the scalar
mesons will be preserved, cf. appendix A.

4 Comparison to older work and conclusions

Our findings are in contradiction with the results of ref. [3].
The specific model for the KK̄ molecule used there was
taken from ref. [19], which, in turn, is a modification of the
approach developed in ref. [20] and based on the quark ex-
change picture. The KK̄ interaction employed in ref. [19]
was approximated by a local potential of the form

V (r) = −V0 exp
[

−1

2

(

r

r0

)2
]

, (27)

with r0 = 0.57 fm. This interaction gives ε = 10 MeV, so
that κr0 ∼ 0.2, and the molecule is rather deuteron-like.

The wave function was parameterized as

ψ(r) =

(

µ3

π

)1/2

e−µr, φ(k) =
(2µ)3/2

π

µ

(k2 + µ2)2
,

(28)
with µ = 0.144 GeV. This wave function yields a good ap-
proximation for the exact wave function, in the momen-
tum space (see [3]). On the other hand, the wave func-
tion (23) with ε = 10 MeV looks very similar, see fig. 4.

So what is wrong with ref. [3], and where does the
suppression of the radiative-decay amplitude come from?
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The answer is rather simple. In ref. [3], the calculations
of the loop integrals were performed by using the wave
function

φ(k) = φ(0)
µ4

(k2 + µ2)2
, (29)

as a form factor, instead of the correct formula (22) for
the form factor. This led to the result of 4 × 10−5 for
the branching ratio (or Γ (φ → γS) = 1.7 × 10−4 MeV).
The same incorrect choice for the form factor was made
in [4]. As µ is as small as 0.144 GeV, no surprise that the
suppression found was huge!

The radiative-decay width calculated with the param-
eterization of the wave function (28) and the correct for-
mula (22) is Γ (φ → γS) = 2.4 × 10−3 MeV. It is some-
what large as compared to the experimental result. We
want to point out, however, that this is primarily due to
the not very accurate parameterization. Indeed, the ap-
proximation (28) is definitely wrong for distances beyond
the range of the forces, r À r0, where the wave func-

tion should behave as
√

κ
2π

e−κr

r . On the other hand, the
deuteron-like wave function is wrong at short distances. It
is clear, however, that possible contributions to the inte-
gral (14) coming from short distances correspond to large
values of |k| where the integrand is suppressed. The value
of 1.1×10−3 MeV for the width, obtained in the point-like
theory with a value of gS given by eq. (26), is therefore
a good approximation to the corresponding width calcu-
lated within a molecular model [19].

In conclusion, there is no considerable suppression of
the φ → γS width in the molecular model for the scalar
mesons. As soon as the form factors of an extended scalar
meson are treated properly, the corresponding results
become very similar to those for a point-like scalar meson
(quarkonium), provided reasonable values are chosen for
the range of the interaction. We confirm the range of
order of 10−3–10−4 for the branching ratio obtained in
refs. [10–12].
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Appendix A. Inclusion of a finite width

In this appendix we discuss the effect of a finite width
of the scalar mesons, due to their decay into two pseu-
doscalars (P1P2), on the total width Γ (φ→ γS).

The P1P2 invariant-mass distribution has the form

dΓ

dmP1P2

=
αg2φω

3(2π)6m2
φ

|(a−b)I(a, b)|2|AKK̄→P1P2
(mP1P2

)|2,

a =
(mφ

m

)2

, b =
(mP1P2

m

)2

, (A.1)

Table 1. The branching ratio Br(φ→ γS)×104; κ1,2 are given
in MeV.

κ1, κ2 0 50 100
70 2.56 3.07 2.80
0 0 1.22 1.57

where ω =
m2
φ−m

2
P1P2

2mφ
is the photon energy and mP1P2

is

the invariant mass of the outgoing pseudoscalars. Here the
range of the force is assumed to be small enough so that
one can take the integral I(a, b) for the point-like case, cf.
eq. (25).

To account for the finite width of the scalar mesons one
is to use the two-channel t-matrix. For the deuteron-like
case, the amplitude in the KK̄ channel can be written
in the scattering length approximation with a complex
scattering length aKK̄ ,

aKK̄ =
1

κ1 + iκ2
, κ2 > 0 , (A.2)

for energies around the KK̄ threshold (and energies suf-
ficiently far away from the P1P2 threshold). Then the
KK̄ → P1P2 transition amplitude A squared can be found
as

|AKK̄→P1P2
(mP1P2

)|2 =

64π2m2
φκ2

[κ1 −
√
−mEΘ(−E)]2 + [κ2 +

√
mEΘ(E)]2

, (A.3)

with E = mP1P2
− 2m.

In the limit κ2 → 0 there is no coupling to the P1P2
channel and, for κ1 > 0, there is a bound state in the
KK̄ channel with the binding energy ε = κ21/m. One can
readily obtain the total radiative width in this case, which
is given by the standard formula,

Γ (φ→ γS) =
αg2Sg

2
φω

48π4m2
φ

|(a− b)I(a, b)|2,

a =
(mφ

m

)2

, b =
(mS

m

)2

, ω =
m2
φ −m2

S

2mφ
, (A.4)

with mS = 2m− ε and gS defined by eq. (24).
In order to estimate the effect of a finite inelasticity κ2,

we have calculated the contribution to the total width,

Γtot =

∫

dmP1P2

dΓ

dmP1P2

(A.5)

from the distribution (A.1) integrated over the near-
threshold region, 900 MeV < M < mφ. The results for
the branching ratios are listed in table 1. One can see
that the branching ratio remains in the order of 10−4

even for κ1 = 0, if the scale of κ2 is around 50–100 MeV.
We conclude, therefore, that the results presented in this
paper are robust against the inclusion of the finite width
of the scalar.

We would like to note here that the above-mentioned
scale for κ2 is quite natural. For example, as was shown



Yu.S. Kalashnikova et al.: The radiative decays φ→ γa0/f0 in the molecular model for the scalar mesons 443

in ref. [21], the data on the ππ scattering near the KK̄
threshold are, indeed, nicely described in the scattering
length approximation, with κ2 lying in this range (and
the ratio κ1/κ2 being of order unity).
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